Strongly maximal intersection-complete neural codes on grids are convex

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric complete intersection codes

In this paper we construct evaluation codes on zero-dimensional complete intersections in toric varieties and give lower bounds for their minimum distance. This generalizes the results of Gold–Little–Schenck and Ballico–Fontanari who considered evaluation codes on complete intersections in the projective space.

متن کامل

On dual toric complete intersection codes

In this paper we study duality for evaluation codes on intersections of d hypersurfaces with given d -dimensional Newton polytopes, so called toric complete intersection codes. In particular, we give a condition for such a code to be quasi-self-dual. In the case of d = 2 it reduces to a combinatorial condition on the Newton polygons. This allows us to give an explicit construction of dual and q...

متن کامل

Maximal Unipotent Monodromy for Complete Intersection CY Manifolds

The computations that are suggested by String Theory in the B model requires the existence of degenerations of CY manifolds with maximum unipotent monodromy. In String Theory such a point in the moduli space is called a large radius limit (or large complex structure limit). In this paper we are going to construct one parameter families of n dimensional Calabi-Yau manifolds, which are complete i...

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2018

ISSN: 0096-3003

DOI: 10.1016/j.amc.2018.04.064